Wichtige Information
Gemeinsam sind wir stärker: RS und Distrelec haben sich zusammengeschlossen und können Ihnen nun ein breiteres Produktsortiment sowie Schweizer Support und Fachwissen vor Ort anbieten.
Gemeinsam sind wir stärker: RS und Distrelec haben sich zusammengeschlossen und können Ihnen nun ein breiteres Produktsortiment sowie Schweizer Support und Fachwissen vor Ort anbieten.
Laut Vorhersagen der Firmen Bosch, TexasInstruments und HP soll sich die Zahl der jährlich installierten Sensoren zwischen 2017 und 2025 zwischen 1 und 10 Billionen bewegen. Dieses rasante Wachstum macht Überlegungen zur Nachhaltigkeit erforderlich.
Moderne Low-Power-Sensoren ermöglichen die präzise lokale, ferngesteuerte oder autonome Steuerung in einer Vielzahl von Einsatzgebieten. Sie sind Schlüsselkomponenten für einen riesigen Anwendungsbereich mit globalen Märkten. Zentrales Merkmal dieser Sensoren ist, dass die Energy-Harvesting-Technologie ihre Funktion ohne Netzanschluss oder Batteriewechsel ermöglicht. Das Energy-Harvesting-Element wird als Energiequelle im Blockschaltbild eines typischen Sensors mit sehr geringer Leistungsaufnahme in Bild 1 gezeigt.
Abbildung 1: Blockschaltbild eines typischen Sensors mit sehr geringer Leistungsaufnahme und Energy-Harvesting-Versorgung.
Ein autarker Sensor enthält folgende Systemelemente:
Eine der zentralen Herausforderungen beim Entwurf eines solchen Sensorsystems ist die Einhaltung des Energie- Budgets (Betriebsspannung; Spitzen-, Ruhe- und Durchschnitts-Betriebsströme).
Die wichtigsten Energiearten, die normalerweise von der Natur oder der Umwelt zur Verfügung gestellt werden, lassen sich relativ leicht erfassen:
Energiequelle | Merkmal | Leistung |
---|---|---|
Licht | im Freien in Gebäuden | 100 mW/cm2 100 µW/cm2 |
Temperatur | Körperwärme industrielle Wärmequellen | 80 µW/cm2 1-1 0mW/cm2 |
Vibration | menschlicher Körper (~Hz) Machine (~kHz) | ~4 µW/cm2 800 µW/cm2 |
HF | GSM 900 MHz WiFi | 0.1 µW/cm2 0.001 µW/cm2 |
Induktion | Beispiel: ZF Energy Harvester | > 0.2 mWs (Ohmsche Last) |
Es gibt so viele verschiedene Typen und Hersteller von Miniatursensoren zur Messung physikalischer Größen - eine Größenordnung, die hier nicht thematisiert werden kann. Zu den Lieferanten von MEMS-Chips gehören unter anderem: STMicroelectronics, Bosch Sensortec, Texas Instruments, NXP, Analog Devices, Seiko Epson, Infineon Technologies, Murata, Sensata und Melexis.
Der Energiespeicher dient als Puffer zwischen Last und Energy Harvester. Er liefert Strom an die Elektronik, wenn der Harvester keine oder nicht genügend Energie bereitstellen kann. Akkus, Superkondensatoren und Festkörperbatterien können zum Speichern elektrischer Energie in Sensorsystemen mit sehr geringem Stromverbrauch verwendet werden.
CeraCharge von TDK (Bild 4) ist ein solcher Solid-State-Akkumulator in SMD-Technologie. In der Baugröße EIA 1812 (4,5mm x 3,2mm x 1,1mm) erhältlich, bietet der Akkumulator eine Kapazität von 100μAh bei einer Nennspannung von 1,4V. Kurzfristig können auch Ströme im Bereich einiger mA entnommen werden. Der Betriebstemperaturbereich liegt zwischen -20°C und +80°C. Zur Erhöhung von Kapazität und Spannung lassen sich einzelne CeraCharge-Chips beliebig in Serie oder parallel schalten.
Wie bereits erwähnt, benötigen drahtlose Sensorlösungen mit sehr geringem Stromverbrauch aufgrund der variablen Spannungs- und Stromzustände eine Energieverwaltung. Dieses Bauteil wandelt die angelieferten ungeregelten Spannungen und Ströme in geregelte elektrische Energie um, die gespeichert werden kann. Es kann auch Energie an die Systemlast mit der richtigen Spannung durchreichen. Typischerweise enthält der Power- Management-Chip Schaltungen zum Schutz sowohl der Last als auch der Energiespeicher:
Ein Beispiel für einen Power-Management-Chip ist der MAX20361 von Maxim Integrated. Es ist ein vollständig integrierter Steuerungs-Chip für die Gewinnung von Energie aus ein- oder mehrzelligen Solar-Quellen. Das Gerät benötigt einen Ruhestrom von 360nA, verfügt über einen Aufwärtswandler, der ab 225mV (typ.) startet. Um die von der Quelle gelieferte Leistung optimal zu nutzen, verfügt der MAX20361 über eine proprietäre sogenannte maximale Leistungs-Punkt-Verfolgungstechnik (MPPT), die eine effiziente Verarbeitung von 15μW bis über 300mW verfügbarer Eingangsleistung erlaubt. Der MAX20361 verfügt außerdem über eine integrierte Ladefunktion mit Schutzschaltung, die für Li-Ion-Batterien optimiert ist. Der Chip kann aber auch zum Aufladen von Superkondensatoren, Dünnfilm-Batterien oder herkömmlichen Kondensatoren verwendet werden. Die Ladeschaltung integriert eine programmierbare Ladeabschaltung. Eine Beschreibung des MAX20361-Evaluation-Kits (Bild 5) findet man im RS-DesignSpark-Web.
Abbildung: MAX20361-Evaluation-Kit. Dieser Chip ist ein vollständig integrierter Steuerungs-Chip für die Gewinnung von Energie aus ein- oder mehrzelligen Solar-Quellen.
Die Wahl der MCU (Mikrocontroller Unit) ist für eingebettete Systeme mit sehr geringem Stromverbrauch von entscheidender Bedeutung. Idealerweise verfügt sie mindestens über die folgenden Funktionen:
Letzteres ist wichtig, da die Schaltungen des Sensorsystems so lange wie möglich in einem niedrigen Verbrauchszustand verbringen sollen, bevor in einen Betriebsmodus übergegangen wird, der mehr Strom verbraucht. Die Renesas RX111 MCU zum Beispiel bietet diese Funktionen.
Drei leistungsgesteuerte Laufmodi des RX111 (High-Speed, Middle-Speed und Low-Speed) und drei Low-Power-Modi (Sleep, Deep Sleep und Software Standby) können so programmiert werden, dass sie verschiedene Kombinationen von On-Chip-Funktionen betriebsbereit machen. Bei Sensoranwendungen ist es beispielsweise eine häufige Anforderung, das System aufzuwecken, wenn ein Ereignis aufgetreten ist oder es in regelmäßigen Abständen mithilfe der integrierten Echtzeituhr (RTC) hochzufahren.
Die Versorgungsspannungs-Anforderungen der MCU werden von den leistungsgesteuerten Run-Modi nicht beeinflusst. Der Betrieb ist immer über den gesamten Bereich von 1,8V bis 3,6V des Bauteils zulässig. Allerdings hängen die Taktfrequenzen, die im High-, Middle- und Low-Speed-Modus verwendbar sind, von der Versorgungsspannung ab.
In den energiesparenden Sleep-, Deep-Sleep- und Software-Standby-Modi der MCU werden verschiedene On-Chip- Funktionen gestoppt oder heruntergefahren:
Obwohl die Modi Sleep, Deep Sleep und Software Standby der RX111-MCU sehr hilfreich sind, um den Stromverbrauch zu senken, können andere Techniken weitere Leistungsreduzierungen erzielen. Beispielsweise können verschiedene Taktsignal-Frequenz- Teilungsverhältnisse individuell eingestellt werden. Darüber hinaus verfügt jedes Peripheriemodul im RX111 über ein separates Stop-Steuerbit.
Die meisten der heute eingesetzten drahtlosen Kommunikationslösungen arbeiten im 2,4-GHz-ISM-Band mit den Protokollen ZigBee, Z-Wave oder Bluetooth LE. ZigBee und Z-Wave werden häufig in der Gebäudetechnik eingesetzt, während Bluetooth Heimautomatisierungs-Anwendungen bedient sowie tragbare Geräte wie Gesundheits- und Fitnessmonitore. Da alle aktuellen Smartphones Bluetooth unterstützen, ist die Anzahl der Sensor-Produkte, die dieses Protokoll verwenden, sehr hoch.
Das Solarzellen-Multisensorboard RSL10 ist eine Entwicklungsplattform für batterielose IoT−Anwendungen einschließlich Smart Building, Smart Home und Industrie 4.0. Es basiert auf dem Bluetooth Low Energy Funkmodul RSL10 von onsemi. Das Board verfügt über einen 3-Achsen-Beschleunigungssensor, einen intelligenten Umweltsensor und einen Temperatursensor. Es umfasst außerdem einen Speicherkondensator mit 47F, eine Programmier- und Debug-Schnittstelle und eine Solarzelle.